'Weak Dependency Graph [60.0]' ------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { a__f(f(a())) -> a__f(g(f(a()))) , mark(f(X)) -> a__f(mark(X)) , mark(a()) -> a() , mark(g(X)) -> g(X) , a__f(X) -> f(X)} Details: We have computed the following set of weak (innermost) dependency pairs: { a__f^#(f(a())) -> c_0(a__f^#(g(f(a())))) , mark^#(f(X)) -> c_1(a__f^#(mark(X))) , mark^#(a()) -> c_2() , mark^#(g(X)) -> c_3() , a__f^#(X) -> c_4()} The usable rules are: { mark(f(X)) -> a__f(mark(X)) , mark(a()) -> a() , mark(g(X)) -> g(X) , a__f(f(a())) -> a__f(g(f(a()))) , a__f(X) -> f(X)} The estimated dependency graph contains the following edges: {a__f^#(f(a())) -> c_0(a__f^#(g(f(a()))))} ==> {a__f^#(X) -> c_4()} {mark^#(f(X)) -> c_1(a__f^#(mark(X)))} ==> {a__f^#(X) -> c_4()} {mark^#(f(X)) -> c_1(a__f^#(mark(X)))} ==> {a__f^#(f(a())) -> c_0(a__f^#(g(f(a()))))} We consider the following path(s): 1) { mark^#(f(X)) -> c_1(a__f^#(mark(X))) , a__f^#(f(a())) -> c_0(a__f^#(g(f(a())))) , a__f^#(X) -> c_4()} The usable rules for this path are the following: { mark(f(X)) -> a__f(mark(X)) , mark(a()) -> a() , mark(g(X)) -> g(X) , a__f(f(a())) -> a__f(g(f(a()))) , a__f(X) -> f(X)} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { mark(f(X)) -> a__f(mark(X)) , mark(a()) -> a() , mark(g(X)) -> g(X) , a__f(f(a())) -> a__f(g(f(a()))) , a__f(X) -> f(X) , a__f^#(f(a())) -> c_0(a__f^#(g(f(a())))) , mark^#(f(X)) -> c_1(a__f^#(mark(X))) , a__f^#(X) -> c_4()} Details: We apply the weight gap principle, strictly orienting the rules { mark(a()) -> a() , mark(g(X)) -> g(X) , a__f^#(X) -> c_4()} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { mark(a()) -> a() , mark(g(X)) -> g(X) , a__f^#(X) -> c_4()} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] a() = [0] g(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] a__f^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [0] mark^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [1] c_2() = [0] c_3() = [0] c_4() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {mark^#(f(X)) -> c_1(a__f^#(mark(X)))} and weakly orienting the rules { mark(a()) -> a() , mark(g(X)) -> g(X) , a__f^#(X) -> c_4()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {mark^#(f(X)) -> c_1(a__f^#(mark(X)))} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] a() = [0] g(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] a__f^#(x1) = [1] x1 + [13] c_0(x1) = [1] x1 + [0] mark^#(x1) = [1] x1 + [15] c_1(x1) = [1] x1 + [0] c_2() = [0] c_3() = [0] c_4() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {mark(f(X)) -> a__f(mark(X))} and weakly orienting the rules { mark^#(f(X)) -> c_1(a__f^#(mark(X))) , mark(a()) -> a() , mark(g(X)) -> g(X) , a__f^#(X) -> c_4()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {mark(f(X)) -> a__f(mark(X))} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] f(x1) = [1] x1 + [1] a() = [1] g(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] a__f^#(x1) = [1] x1 + [0] c_0(x1) = [1] x1 + [0] mark^#(x1) = [1] x1 + [8] c_1(x1) = [1] x1 + [0] c_2() = [0] c_3() = [0] c_4() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { a__f(f(a())) -> a__f(g(f(a()))) , a__f(X) -> f(X) , a__f^#(f(a())) -> c_0(a__f^#(g(f(a()))))} Weak Rules: { mark(f(X)) -> a__f(mark(X)) , mark^#(f(X)) -> c_1(a__f^#(mark(X))) , mark(a()) -> a() , mark(g(X)) -> g(X) , a__f^#(X) -> c_4()} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { a__f(f(a())) -> a__f(g(f(a()))) , a__f(X) -> f(X) , a__f^#(f(a())) -> c_0(a__f^#(g(f(a()))))} Weak Rules: { mark(f(X)) -> a__f(mark(X)) , mark^#(f(X)) -> c_1(a__f^#(mark(X))) , mark(a()) -> a() , mark(g(X)) -> g(X) , a__f^#(X) -> c_4()} Details: The problem is Match-bounded by 3. The enriched problem is compatible with the following automaton: { a__f_0(10) -> 10 , a__f_1(12) -> 10 , a__f_1(16) -> 16 , a__f_2(18) -> 16 , f_0(2) -> 2 , f_0(3) -> 2 , f_0(4) -> 2 , f_1(10) -> 10 , f_1(14) -> 13 , f_2(12) -> 10 , f_2(16) -> 16 , f_2(20) -> 19 , f_3(18) -> 16 , a_0() -> 3 , a_0() -> 10 , a_1() -> 14 , a_1() -> 16 , a_2() -> 20 , g_0(2) -> 4 , g_0(2) -> 10 , g_0(3) -> 4 , g_0(3) -> 10 , g_0(4) -> 4 , g_0(4) -> 10 , g_1(2) -> 16 , g_1(3) -> 16 , g_1(4) -> 16 , g_1(13) -> 12 , g_2(19) -> 18 , mark_0(2) -> 10 , mark_0(3) -> 10 , mark_0(4) -> 10 , mark_1(2) -> 16 , mark_1(3) -> 16 , mark_1(4) -> 16 , a__f^#_0(2) -> 6 , a__f^#_0(3) -> 6 , a__f^#_0(4) -> 6 , a__f^#_0(10) -> 9 , a__f^#_1(12) -> 11 , a__f^#_1(16) -> 15 , a__f^#_2(18) -> 17 , c_0_1(11) -> 6 , c_0_1(11) -> 9 , c_0_2(17) -> 15 , mark^#_0(2) -> 8 , mark^#_0(3) -> 8 , mark^#_0(4) -> 8 , c_1_0(9) -> 8 , c_1_1(15) -> 8 , c_4_0() -> 6 , c_4_0() -> 9 , c_4_1() -> 11 , c_4_1() -> 15 , c_4_2() -> 17} 2) { mark^#(f(X)) -> c_1(a__f^#(mark(X))) , a__f^#(f(a())) -> c_0(a__f^#(g(f(a()))))} The usable rules for this path are the following: { mark(f(X)) -> a__f(mark(X)) , mark(a()) -> a() , mark(g(X)) -> g(X) , a__f(f(a())) -> a__f(g(f(a()))) , a__f(X) -> f(X)} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { mark(f(X)) -> a__f(mark(X)) , mark(a()) -> a() , mark(g(X)) -> g(X) , a__f(f(a())) -> a__f(g(f(a()))) , a__f(X) -> f(X) , mark^#(f(X)) -> c_1(a__f^#(mark(X))) , a__f^#(f(a())) -> c_0(a__f^#(g(f(a()))))} Details: We apply the weight gap principle, strictly orienting the rules { mark(a()) -> a() , mark(g(X)) -> g(X)} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { mark(a()) -> a() , mark(g(X)) -> g(X)} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] a() = [0] g(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] a__f^#(x1) = [1] x1 + [0] c_0(x1) = [1] x1 + [1] mark^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [0] c_2() = [0] c_3() = [0] c_4() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {mark^#(f(X)) -> c_1(a__f^#(mark(X)))} and weakly orienting the rules { mark(a()) -> a() , mark(g(X)) -> g(X)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {mark^#(f(X)) -> c_1(a__f^#(mark(X)))} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] a() = [0] g(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] a__f^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [3] mark^#(x1) = [1] x1 + [9] c_1(x1) = [1] x1 + [0] c_2() = [0] c_3() = [0] c_4() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {mark(f(X)) -> a__f(mark(X))} and weakly orienting the rules { mark^#(f(X)) -> c_1(a__f^#(mark(X))) , mark(a()) -> a() , mark(g(X)) -> g(X)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {mark(f(X)) -> a__f(mark(X))} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] f(x1) = [1] x1 + [1] a() = [0] g(x1) = [1] x1 + [8] mark(x1) = [1] x1 + [7] a__f^#(x1) = [1] x1 + [2] c_0(x1) = [1] x1 + [8] mark^#(x1) = [1] x1 + [13] c_1(x1) = [1] x1 + [1] c_2() = [0] c_3() = [0] c_4() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { a__f(f(a())) -> a__f(g(f(a()))) , a__f(X) -> f(X) , a__f^#(f(a())) -> c_0(a__f^#(g(f(a()))))} Weak Rules: { mark(f(X)) -> a__f(mark(X)) , mark^#(f(X)) -> c_1(a__f^#(mark(X))) , mark(a()) -> a() , mark(g(X)) -> g(X)} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { a__f(f(a())) -> a__f(g(f(a()))) , a__f(X) -> f(X) , a__f^#(f(a())) -> c_0(a__f^#(g(f(a()))))} Weak Rules: { mark(f(X)) -> a__f(mark(X)) , mark^#(f(X)) -> c_1(a__f^#(mark(X))) , mark(a()) -> a() , mark(g(X)) -> g(X)} Details: The problem is Match-bounded by 3. The enriched problem is compatible with the following automaton: { a__f_0(4) -> 4 , a__f_1(6) -> 4 , a__f_1(10) -> 10 , a__f_2(12) -> 10 , f_0(2) -> 2 , f_1(4) -> 4 , f_1(8) -> 7 , f_2(6) -> 4 , f_2(10) -> 10 , f_2(14) -> 13 , f_3(12) -> 10 , a_0() -> 2 , a_0() -> 4 , a_1() -> 8 , a_1() -> 10 , a_2() -> 14 , g_0(2) -> 2 , g_0(2) -> 4 , g_1(2) -> 10 , g_1(7) -> 6 , g_2(13) -> 12 , mark_0(2) -> 4 , mark_1(2) -> 10 , a__f^#_0(2) -> 1 , a__f^#_0(4) -> 3 , a__f^#_1(6) -> 5 , a__f^#_1(10) -> 9 , a__f^#_2(12) -> 11 , c_0_1(5) -> 1 , c_0_1(5) -> 3 , c_0_2(11) -> 9 , mark^#_0(2) -> 1 , c_1_0(3) -> 1 , c_1_1(9) -> 1} 3) { mark^#(f(X)) -> c_1(a__f^#(mark(X))) , a__f^#(X) -> c_4()} The usable rules for this path are the following: { mark(f(X)) -> a__f(mark(X)) , mark(a()) -> a() , mark(g(X)) -> g(X) , a__f(f(a())) -> a__f(g(f(a()))) , a__f(X) -> f(X)} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { mark(f(X)) -> a__f(mark(X)) , mark(a()) -> a() , mark(g(X)) -> g(X) , a__f(f(a())) -> a__f(g(f(a()))) , a__f(X) -> f(X) , mark^#(f(X)) -> c_1(a__f^#(mark(X))) , a__f^#(X) -> c_4()} Details: We apply the weight gap principle, strictly orienting the rules { mark(a()) -> a() , mark(g(X)) -> g(X)} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { mark(a()) -> a() , mark(g(X)) -> g(X)} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] a() = [0] g(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] a__f^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] mark^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [0] c_2() = [0] c_3() = [0] c_4() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {a__f^#(X) -> c_4()} and weakly orienting the rules { mark(a()) -> a() , mark(g(X)) -> g(X)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {a__f^#(X) -> c_4()} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] a() = [0] g(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] a__f^#(x1) = [1] x1 + [8] c_0(x1) = [0] x1 + [0] mark^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [3] c_2() = [0] c_3() = [0] c_4() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {mark^#(f(X)) -> c_1(a__f^#(mark(X)))} and weakly orienting the rules { a__f^#(X) -> c_4() , mark(a()) -> a() , mark(g(X)) -> g(X)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {mark^#(f(X)) -> c_1(a__f^#(mark(X)))} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] a() = [0] g(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] a__f^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] mark^#(x1) = [1] x1 + [9] c_1(x1) = [1] x1 + [1] c_2() = [0] c_3() = [0] c_4() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {a__f(X) -> f(X)} and weakly orienting the rules { mark^#(f(X)) -> c_1(a__f^#(mark(X))) , a__f^#(X) -> c_4() , mark(a()) -> a() , mark(g(X)) -> g(X)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {a__f(X) -> f(X)} Details: Interpretation Functions: a__f(x1) = [1] x1 + [8] f(x1) = [1] x1 + [0] a() = [0] g(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] a__f^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] mark^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [0] c_2() = [0] c_3() = [0] c_4() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(f(X)) -> a__f(mark(X)) , a__f(f(a())) -> a__f(g(f(a())))} Weak Rules: { a__f(X) -> f(X) , mark^#(f(X)) -> c_1(a__f^#(mark(X))) , a__f^#(X) -> c_4() , mark(a()) -> a() , mark(g(X)) -> g(X)} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(f(X)) -> a__f(mark(X)) , a__f(f(a())) -> a__f(g(f(a())))} Weak Rules: { a__f(X) -> f(X) , mark^#(f(X)) -> c_1(a__f^#(mark(X))) , a__f^#(X) -> c_4() , mark(a()) -> a() , mark(g(X)) -> g(X)} Details: The problem is Match-bounded by 2. The enriched problem is compatible with the following automaton: { a__f_1(11) -> 10 , a__f_1(11) -> 11 , a__f_2(13) -> 10 , a__f_2(13) -> 11 , f_0(2) -> 2 , f_0(3) -> 2 , f_0(4) -> 2 , f_1(11) -> 10 , f_1(11) -> 11 , f_2(13) -> 10 , f_2(13) -> 11 , f_2(15) -> 14 , a_0() -> 3 , a_0() -> 10 , a_1() -> 11 , a_2() -> 15 , g_0(2) -> 4 , g_0(2) -> 10 , g_0(3) -> 4 , g_0(3) -> 10 , g_0(4) -> 4 , g_0(4) -> 10 , g_1(2) -> 11 , g_1(3) -> 11 , g_1(4) -> 11 , g_2(14) -> 13 , mark_0(2) -> 10 , mark_0(3) -> 10 , mark_0(4) -> 10 , mark_1(2) -> 11 , mark_1(3) -> 11 , mark_1(4) -> 11 , a__f^#_0(2) -> 6 , a__f^#_0(3) -> 6 , a__f^#_0(4) -> 6 , a__f^#_0(10) -> 9 , a__f^#_1(11) -> 12 , mark^#_0(2) -> 8 , mark^#_0(3) -> 8 , mark^#_0(4) -> 8 , c_1_0(9) -> 8 , c_1_1(12) -> 8 , c_4_0() -> 6 , c_4_0() -> 9 , c_4_1() -> 12} 4) {mark^#(f(X)) -> c_1(a__f^#(mark(X)))} The usable rules for this path are the following: { mark(f(X)) -> a__f(mark(X)) , mark(a()) -> a() , mark(g(X)) -> g(X) , a__f(f(a())) -> a__f(g(f(a()))) , a__f(X) -> f(X)} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { mark(f(X)) -> a__f(mark(X)) , mark(a()) -> a() , mark(g(X)) -> g(X) , a__f(f(a())) -> a__f(g(f(a()))) , a__f(X) -> f(X) , mark^#(f(X)) -> c_1(a__f^#(mark(X)))} Details: We apply the weight gap principle, strictly orienting the rules { mark(a()) -> a() , mark(g(X)) -> g(X)} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { mark(a()) -> a() , mark(g(X)) -> g(X)} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] a() = [0] g(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] a__f^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] mark^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [0] c_2() = [0] c_3() = [0] c_4() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {mark^#(f(X)) -> c_1(a__f^#(mark(X)))} and weakly orienting the rules { mark(a()) -> a() , mark(g(X)) -> g(X)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {mark^#(f(X)) -> c_1(a__f^#(mark(X)))} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] a() = [0] g(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] a__f^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] mark^#(x1) = [1] x1 + [9] c_1(x1) = [1] x1 + [0] c_2() = [0] c_3() = [0] c_4() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {a__f(X) -> f(X)} and weakly orienting the rules { mark^#(f(X)) -> c_1(a__f^#(mark(X))) , mark(a()) -> a() , mark(g(X)) -> g(X)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {a__f(X) -> f(X)} Details: Interpretation Functions: a__f(x1) = [1] x1 + [1] f(x1) = [1] x1 + [0] a() = [2] g(x1) = [1] x1 + [2] mark(x1) = [1] x1 + [1] a__f^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] mark^#(x1) = [1] x1 + [13] c_1(x1) = [1] x1 + [8] c_2() = [0] c_3() = [0] c_4() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(f(X)) -> a__f(mark(X)) , a__f(f(a())) -> a__f(g(f(a())))} Weak Rules: { a__f(X) -> f(X) , mark^#(f(X)) -> c_1(a__f^#(mark(X))) , mark(a()) -> a() , mark(g(X)) -> g(X)} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(f(X)) -> a__f(mark(X)) , a__f(f(a())) -> a__f(g(f(a())))} Weak Rules: { a__f(X) -> f(X) , mark^#(f(X)) -> c_1(a__f^#(mark(X))) , mark(a()) -> a() , mark(g(X)) -> g(X)} Details: The problem is Match-bounded by 2. The enriched problem is compatible with the following automaton: { a__f_1(11) -> 10 , a__f_1(11) -> 11 , a__f_2(13) -> 10 , a__f_2(13) -> 11 , f_0(2) -> 2 , f_0(3) -> 2 , f_0(4) -> 2 , f_1(11) -> 10 , f_1(11) -> 11 , f_2(13) -> 10 , f_2(13) -> 11 , f_2(15) -> 14 , a_0() -> 3 , a_0() -> 10 , a_1() -> 11 , a_2() -> 15 , g_0(2) -> 4 , g_0(2) -> 10 , g_0(3) -> 4 , g_0(3) -> 10 , g_0(4) -> 4 , g_0(4) -> 10 , g_1(2) -> 11 , g_1(3) -> 11 , g_1(4) -> 11 , g_2(14) -> 13 , mark_0(2) -> 10 , mark_0(3) -> 10 , mark_0(4) -> 10 , mark_1(2) -> 11 , mark_1(3) -> 11 , mark_1(4) -> 11 , a__f^#_0(2) -> 6 , a__f^#_0(3) -> 6 , a__f^#_0(4) -> 6 , a__f^#_0(10) -> 9 , a__f^#_1(11) -> 12 , mark^#_0(2) -> 8 , mark^#_0(3) -> 8 , mark^#_0(4) -> 8 , c_1_0(9) -> 8 , c_1_1(12) -> 8} 5) {mark^#(g(X)) -> c_3()} The usable rules for this path are empty. We have oriented the usable rules with the following strongly linear interpretation: Interpretation Functions: a__f(x1) = [0] x1 + [0] f(x1) = [0] x1 + [0] a() = [0] g(x1) = [0] x1 + [0] mark(x1) = [0] x1 + [0] a__f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] mark^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] c_2() = [0] c_3() = [0] c_4() = [0] We have applied the subprocessor on the resulting DP-problem: 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {mark^#(g(X)) -> c_3()} Weak Rules: {} Details: We apply the weight gap principle, strictly orienting the rules {mark^#(g(X)) -> c_3()} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {mark^#(g(X)) -> c_3()} Details: Interpretation Functions: a__f(x1) = [0] x1 + [0] f(x1) = [0] x1 + [0] a() = [0] g(x1) = [1] x1 + [0] mark(x1) = [0] x1 + [0] a__f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] mark^#(x1) = [1] x1 + [1] c_1(x1) = [0] x1 + [0] c_2() = [0] c_3() = [0] c_4() = [0] Finally we apply the subprocessor 'Empty TRS' ----------- Answer: YES(?,O(1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {} Weak Rules: {mark^#(g(X)) -> c_3()} Details: The given problem does not contain any strict rules 6) {mark^#(a()) -> c_2()} The usable rules for this path are empty. We have oriented the usable rules with the following strongly linear interpretation: Interpretation Functions: a__f(x1) = [0] x1 + [0] f(x1) = [0] x1 + [0] a() = [0] g(x1) = [0] x1 + [0] mark(x1) = [0] x1 + [0] a__f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] mark^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] c_2() = [0] c_3() = [0] c_4() = [0] We have applied the subprocessor on the resulting DP-problem: 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {mark^#(a()) -> c_2()} Weak Rules: {} Details: We apply the weight gap principle, strictly orienting the rules {mark^#(a()) -> c_2()} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {mark^#(a()) -> c_2()} Details: Interpretation Functions: a__f(x1) = [0] x1 + [0] f(x1) = [0] x1 + [0] a() = [0] g(x1) = [0] x1 + [0] mark(x1) = [0] x1 + [0] a__f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] mark^#(x1) = [1] x1 + [1] c_1(x1) = [0] x1 + [0] c_2() = [0] c_3() = [0] c_4() = [0] Finally we apply the subprocessor 'Empty TRS' ----------- Answer: YES(?,O(1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {} Weak Rules: {mark^#(a()) -> c_2()} Details: The given problem does not contain any strict rules